Lrp4, a Novel Receptor for Dickkopf 1 and Sclerostin, Is Expressed by Osteoblasts and Regulates Bone Growth and Turnover In Vivo
نویسندگان
چکیده
Lrp4 is a multifunctional member of the low density lipoprotein-receptor gene family and a modulator of extracellular cell signaling pathways in development. For example, Lrp4 binds Wise, a secreted Wnt modulator and BMP antagonist. Lrp4 shares structural elements within the extracellular ligand binding domain with Lrp5 and Lrp6, two established Wnt co-receptors with important roles in osteogenesis. Sclerostin is a potent osteocyte secreted inhibitor of bone formation that directly binds Lrp5 and Lrp6 and modulates both BMP and Wnt signaling. The anti-osteogenic effect of sclerostin is thought to be mediated mainly by inhibition of Wnt signaling through Lrp5/6 within osteoblasts. Dickkopf1 (Dkk1) is another potent soluble Wnt inhibitor that binds to Lrp5 and Lrp6, can displace Lrp5-bound sclerostin and is itself regulated by BMPs. In a recent genome-wide association study of bone mineral density a significant modifier locus was detected near the SOST gene at 17q21, which encodes sclerostin. In addition, nonsynonymous SNPs in the LRP4 gene were suggestively associated with bone mineral density. Here we show that Lrp4 is expressed in bone and cultured osteoblasts and binds Dkk1 and sclerostin in vitro. MicroCT analysis of Lrp4 deficient mutant mice revealed shortened total femur length, reduced cortical femoral perimeter, and reduced total femur bone mineral content (BMC) and bone mineral density (BMD). Lumbar spine trabecular bone volume per total volume (BV/TV) was significantly reduced in the mutants and the serum and urinary bone turnover markers alkaline phosphatase, osteocalcin and desoxypyridinoline were increased. We conclude that Lrp4 is a novel osteoblast expressed Dkk1 and sclerostin receptor with a physiological role in the regulation of bone growth and turnover, which is likely mediated through its function as an integrator of Wnt and BMP signaling pathways.
منابع مشابه
Lrp4 in osteoblasts suppresses bone formation and promotes osteoclastogenesis and bone resorption.
Bone mass is maintained by balanced activity of osteoblasts and osteoclasts. Lrp4 (low-density lipoprotein receptor related protein 4) is a member of the LDL receptor family, whose mutations have been identified in patients with high-bone-mass disorders, such as sclerosteosis and van Buchem diseases. However, it remains unknown whether and how Lrp4 regulates bone-mass homeostasis in vivo. Here ...
متن کاملChanges in Serum Levels of Myokines and Wnt-Antagonists after an Ultramarathon Race
BACKGROUND Regular physical activities have a positive effect on the muscular skeletal system but overstrenuous exercise may be different. Transiently suppressed bone formation and increased bone resorption after participation in a 246-km ultradistance race has been demonstrated. PURPOSE The aim of this study was to analyze effects of the Spartathlon race on novel musculoskeletal markers. M...
متن کاملSclerostin serum levels correlate positively with bone mineral density and microarchitecture in haemodialysis patients.
BACKGROUND Sclerostin is a soluble inhibitor of osteoblast function. Sclerostin is downregulated by the parathyroid hormone (PTH). Here, it was investigated whether sclerostin levels are influenced by intact (i) PTH and whether sclerostin is associated with bone turnover, microarchitecture and mass in dialysis patients. METHODS Seventy-six haemodialysis patients and 45 healthy controls were i...
متن کاملTargeting the osteoblast: approved and experimental anabolic agents for the treatment of osteoporosis.
Targeting osteoblast may be the means of effectively improving both bone quality and mass, thus offering an intriguing alternative in the treatment of osteoporosis. Aside from injectable parathyroid hormone (PTH) and its novel preparations, PTH-related peptide (PTHrP), calcilytics, beta-adrenergic receptors, enhancement of Wnt signaling (mainly via sclerostin and Dickkopf-1 neutralization), reg...
متن کاملEffects of Single Vitamin D3 Injection (200,000 Units) on Serum Fibroblast Growth Factor 23 and Sclerostin Levels in Subjects with Vitamin D Deficiency
BACKGROUND Vitamin D deficiency remains common in all age groups and affects skeletal and non-skeletal health. Fibroblast growth factor 23 is a bone-derived hormone that regulates phosphate and 1,25-dihydroxyvitamin D homeostasis as a counter regulatory factor. 1,25-Dihydroxyvitamin D stimulates fibroblast growth factor 23 synthesis in bone, while fibroblast growth factor 23 suppresses 1,25-dih...
متن کامل